1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
| import copy import math import random import time import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as Rot import numpy as np show_animation = True class RRT: def __init__(self, obstacleList, randArea, expandDis=2.0, goalSampleRate=10, maxIter=200): self.start = None self.goal = None self.min_rand = randArea[0] self.max_rand = randArea[1] self.expand_dis = expandDis self.goal_sample_rate = goalSampleRate self.max_iter = maxIter self.obstacle_list = obstacleList self.node_list = None def rrt_planning(self, start, goal, animation=True): start_time = time.time() self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.node_list = [self.start] path = None for i in range(self.max_iter): rnd = self.sample() n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y) if noCollision: self.node_list.append(newNode) if animation: self.draw_graph(newNode, path) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): lastIndex = len(self.node_list) - 1 path = self.get_final_course(lastIndex) pathLen = self.get_path_len(path) print("current path length: {}, It costs {} s".format(pathLen, time.time()-start_time)) if animation: self.draw_graph(newNode, path) return path def rrt_star_planning(self, start, goal, animation=True): start_time = time.time() self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.node_list = [self.start] path = None lastPathLength = float('inf') for i in range(self.max_iter): rnd = self.sample() n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y) if noCollision: nearInds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearInds) self.node_list.append(newNode) self.rewire(newNode, nearInds) if animation: self.draw_graph(newNode, path) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): lastIndex = len(self.node_list) - 1 tempPath = self.get_final_course(lastIndex) tempPathLen = self.get_path_len(tempPath) if lastPathLength > tempPathLen: path = tempPath lastPathLength = tempPathLen print("current path length: {}, It costs {} s".format(tempPathLen, time.time()-start_time)) return path def informed_rrt_star_planning(self, start, goal, animation=True): start_time = time.time() self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.node_list = [self.start] cBest = float('inf') path = None cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) + pow(self.start.y - self.goal.y, 2)) xCenter = np.array([[(self.start.x + self.goal.x) / 2.0], [(self.start.y + self.goal.y) / 2.0], [0]]) a1 = np.array([[(self.goal.x - self.start.x) / cMin], [(self.goal.y - self.start.y) / cMin], [0]]) e_theta = math.atan2(a1[1], a1[0]) C = np.array([[math.cos(e_theta), -math.sin(e_theta), 0], [math.sin(e_theta), math.cos(e_theta), 0], [0, 0, 1]]) for i in range(self.max_iter): rnd = self.informed_sample(cBest, cMin, xCenter, C) n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y) if noCollision: nearInds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearInds) self.node_list.append(newNode) self.rewire(newNode, nearInds) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): lastIndex = len(self.node_list) - 1 tempPath = self.get_final_course(lastIndex) tempPathLen = self.get_path_len(tempPath) if tempPathLen < cBest: path = tempPath cBest = tempPathLen print("current path length: {}, It costs {} s".format(tempPathLen, time.time()-start_time)) if animation: self.draw_graph_informed_RRTStar(xCenter=xCenter, cBest=cBest, cMin=cMin, e_theta=e_theta, rnd=rnd, path=path) return path def sample(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] else: rnd = [self.goal.x, self.goal.y] return rnd def choose_parent(self, newNode, nearInds): if len(nearInds) == 0: return newNode dList = [] for i in nearInds: dx = newNode.x - self.node_list[i].x dy = newNode.y - self.node_list[i].y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) if self.check_collision(self.node_list[i], theta, d): dList.append(self.node_list[i].cost + d) else: dList.append(float('inf')) minCost = min(dList) minInd = nearInds[dList.index(minCost)] if minCost == float('inf'): print("min cost is inf") return newNode newNode.cost = minCost newNode.parent = minInd return newNode def find_near_nodes(self, newNode): n_node = len(self.node_list) r = 50.0 * math.sqrt((math.log(n_node) / n_node)) d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.node_list] near_inds = [d_list.index(i) for i in d_list if i <= r ** 2] return near_inds def informed_sample(self, cMax, cMin, xCenter, C): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] else: rnd = self.sample() return rnd @staticmethod def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]]) @staticmethod def get_path_len(path): pathLen = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i - 1][0] node2_y = path[i - 1][1] pathLen += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2) return pathLen @staticmethod def line_cost(node1, node2): return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2) @staticmethod def get_nearest_list_index(nodes, rnd): dList = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodes] minIndex = dList.index(min(dList)) return minIndex def get_new_node(self, theta, n_ind, nearestNode): newNode = copy.deepcopy(nearestNode) newNode.x += self.expand_dis * math.cos(theta) newNode.y += self.expand_dis * math.sin(theta) newNode.cost += self.expand_dis newNode.parent = n_ind return newNode def is_near_goal(self, node): d = self.line_cost(node, self.goal) if d < self.expand_dis: return True return False def rewire(self, newNode, nearInds): n_node = len(self.node_list) for i in nearInds: nearNode = self.node_list[i] d = math.sqrt((nearNode.x - newNode.x) ** 2 + (nearNode.y - newNode.y) ** 2) s_cost = newNode.cost + d if nearNode.cost > s_cost: theta = math.atan2(newNode.y - nearNode.y, newNode.x - nearNode.x) if self.check_collision(nearNode, theta, d): nearNode.parent = n_node - 1 nearNode.cost = s_cost @staticmethod def distance_squared_point_to_segment(v, w, p): if np.array_equal(v, w): return (p - v).dot(p - v) l2 = (w - v).dot(w - v) t = max(0, min(1, (p - v).dot(w - v) / l2)) projection = v + t * (w - v) return (p - projection).dot(p - projection) def check_segment_collision(self, x1, y1, x2, y2): for (ox, oy, size) in self.obstacle_list: dd = self.distance_squared_point_to_segment( np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy])) if dd <= size ** 2: return False return True def check_collision(self, nearNode, theta, d): tmpNode = copy.deepcopy(nearNode) end_x = tmpNode.x + math.cos(theta) * d end_y = tmpNode.y + math.sin(theta) * d return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y) def get_final_course(self, lastIndex): path = [[self.goal.x, self.goal.y]] while self.node_list[lastIndex].parent is not None: node = self.node_list[lastIndex] path.append([node.x, node.y]) lastIndex = node.parent path.append([self.start.x, self.start.y]) return path def draw_graph_informed_RRTStar(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None, path=None): plt.clf() plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, e_theta) for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.node_list[node.parent].x], [ node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) if path is not None: plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") plt.axis([-2, 18, -2, 15]) plt.grid(True) plt.pause(0.01) @staticmethod def plot_ellipse(xCenter, cBest, cMin, e_theta): a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - e_theta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] rot = Rot.from_euler('z', -angle).as_matrix()[0:2, 0:2] fx = rot @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c") def draw_graph(self, rnd=None, path=None): plt.clf() plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.node_list[node.parent].x], [ node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") if path is not None: plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.axis([-2, 18, -2, 15]) plt.grid(True) plt.pause(0.01) class Node: def __init__(self, x, y): self.x = x self.y = y self.cost = 0.0 self.parent = None def main(): print("Start rrt planning") obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1)] rrt = RRT(randArea=[-2, 18], obstacleList=obstacleList, maxIter=200) path = rrt.rrt_planning(start=[0, 0], goal=[15, 12], animation=show_animation) print("Done!!") if show_animation and path: plt.show() if __name__ == '__main__': main()
|